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Abstract-An analysis is performed to study the flow and heat transfer characteristics of laminar free 
convection on isolhcrrnal vertical and horizontal Rat plates with uniform vectored surface mass transfer. 
The governing equations are first cast inlo a dimensionless form by a nonsimilar transformation and the 
resulting equations are then solved by a finite difference method. Numerical results for gases with a Prdndtl 
number of 0.7 are presented for representative values of the normal and streamwise components of the 
uniform surface mass transfer. For both vertical and horizontal plates, it has been found that an increase 
in the normal injection (ow > 0) results in a decrease in the local surface heat transfer rate for both 
downstream vectoring (u, > 0) and upstream vectoring (u, < 0). On the other hand, an increase in the 
normal suction (Ok < 0) results in an increase in the local surface heat transfer rate. For a given value of 
the normal injection or suction parameter, an increase in the downstream vectoring increases the local 
surface heat transfer rate and decreases the local wall shear stress. The opposite is true for the case of 

increasing upstream vectoring. No experimental data are abailable for comparison. 

INTRODUCTION 

THIS PAPER is concerned with natural convection in 
laminar boundary layer flows along vertical and hori- 
zontal flat plates with uniform wall temperature and 
uniform vectored surface mass transfer. Earlier inves- 
tigations by Swean and Inger [I] and by Chen and 
Sparrow [2] with vectored mass transfer were confined 
to forced convection. In the analysis of Swean and 
Inger. the surface mass transfer comprised of a 
streamwise component u,, which was uniform, and 
a normal component c,, which varied as cl, x .Y-‘!I 
so that the boundary layer would admit similarity 
solutions. On the other hand. Chen and Sparrow pro- 
vided results for both uniform u, and uniform t’, by 
introducing a nonsimilarity parameter. More recently, 
studies on mixed convection with mass transfer have 
been conducted by Tsuruno and Iguchi [3], Yucel 
[4], and Dey [5]. Tsuruno and Iguchi studied mixed 
convection with uniform normal blowing over a ver- 
tical plate. The mass transfer parameter was defined 
as a function of L’,, Re,, and Cr.,. Yucel’s study dealt 
with mixed convection on horizontal plates with uni- 
form normal mass transfer by combining the buoy- 
ancy parameter and the mass transfer parameter to 
form a nonsimilarity parameter. Dey examined the 
effect of vectored surface mass transfer in mixed 
convection over horizontal flat plates. The normal 
component of the mass transfer u, was varied as 
u, K x- ‘I2 so that it led to the similarity solution. 

The case of natural convection with mass transfer 
has received considerably less attention. Parikh et al. 
[6] studied natural convection over vertical plates with 
variable normal mass transfer, v, cc x- ‘14. The pre- 
sent study treats the effect of uniform vectored surface 

mass transfer on natural convection over vertical and 
horizontal flat plates. The results of this analysis 
should be of general interest in practical problems 
involving film cooling, control of boundary layers, 
etc. The conservation equations are converted into a 
dimensionless form by a nonsimilarity transformation 
and the transformed equations are then solved by a 
finite difference method. Numerical results are pre- 
sented for a Prandtl number of 0.7 and cover a wide 
range of values of the vectored mass transfer par- 
ameters. The effect of downstream vectoring mass 
transfer (u, > 0 and L’, > 0 or v, < 0) and upstream 
vectoring mass transfer (ZI, < 0 and ~1, > 0 or ~1,” < 0) 
on the flow and thermal fields is discussed. 

ANALYSIS 

Consider semi-infinite vertical and horizontal flat 
plates that are situated in a quiescent fluid at an ambi- 
ent temperature T,,. The plate is maintained at a 
uniform wall temperature T,. The x-coordinate is 
measured from the leading edge of the plate and the 
y-coordinate is measured normal to the plate. In the 
analysis, the vectored surface mass transfer is assumed 
constant, with a normal component v, and a stream- 
wise component u,. The gravitational acceleration 
g is acting downward. For injection u, is positive, 
whereas for suction v, is negative. The downstream 
vectoring corresponds to u, > 0 and the upstream 
vectoring to u, < 0. 

In the analysis, the fluid properties are assumed 
constant except for changes in density that induce 
the buoyancy force. By using this assumption and 
applying the Boussinesq approximation, one can write 
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NOMENCLATURE 

Lfl reduced stream functions Greek symbols 
9 gravitational acceleration 
Gr, local Grzshof number, g,!I(ZY,- T.I,)s’/v2 ; 

thermal diffusivity 
volumetric coefficient of thermal 

h local heat transfer coefficient, expansion 
Ywlu-w- TX) rl, q, pseudo-similarity variables 

k thermal conductivity 8, 0, dimensionless temperatures 
Nu,~ local Nusselt number, h/k P dynamic viscosity 
Pr Prandtl number, v/cr kinematic viscosity 
4w local surface heat flux i4, nonsimilar parameters 
T fluid temperature P density of fluid 
u streamwise velocity component local shear stress 
uw dimensionless streamwise component of i stream function. 

mass transfer, (u,/u,)/(o,x/v) 
V normal velocity component Subscripts 
9 streamwise coordinate W condition at the wall 
Y normal coordinate. 03 condition at the free stream. 

the governing equations for laminar boundary layer Vertical plates 
flow along an inclined plate as [7] 

d”+!& 
ax ay 

u$+o$=gpcos&T-T,) 

(T-T,) dy+v$ (2) 

au au d’T 
uz+“dl’=yp (3) 

where 4 is the angle of inclination from the vertical. 
In the above equations, u and v stand for velocity 
components in the x and y directions, T is the fluid 
temperature, /I is the volumetric coefficient of thermal 
expansion, and p, v, and tl are the density, kinematic 
viscosity, and thermal diffusivity of the fluid. The 
first two terms on the right-hand side of equation (2) 
represent, respectively, the streamwise component of 
the buoyancy force and the buoyancy-induced stream- 
wise pressure gradient. For a vertical plate, 4 = 0, 
the second term on the right-hand side of equation 
(2) disappears. For a horizontal plate, Q, = n/f, the 
first term on the right-hand side of equation (2) van- 
ishes. The boundary conditions for this problem are 

u = u,, v = v,, T=T, at y=O 

u+O, T-+T, as y-00. (4) 

The system of equations (l)-(4) will next be trans- 
formed into a dimensionless form. Owing to the con- 
stant mass transfer at the wall, the boundary layers 
are nonsimilar. The transformation will be carried out 
separately for vertical and horizontal plates. 

For this case, C#J = 0, one introduces the dimen- 
sionless variables 

5 = t(x), q = : (Gr,/4) “4 (5) 

where 5, depending only on x, is the nonsimilar par- 
ameter and q is a pseudo-similarity variable. For 
t(x) = 0, the boundary layer becomes similar and q 
becomes a true similarity variable. One also intro- 
duces the reduced stream function f (c, r~) and the 
dimensionless temperature function O(?$ ~7) defined, 
respectively, by 

vQ(x7 Y) 
ef-(” a) = 4v(Gr,/4) l/4 ’ (6) 

where Gr,V = g,Cl(T,- T,,)x’/? is the local Grashof 
number and I+?(& 0) is the stream function that satisfies 
the continuity equation (1) with u = @/ay and 
v = -a$lax. 

Substituting equations (5) and (6) into equations 
(l)-(4) with 4 = O”, one obtains the following system 
of equations : 

f’“+3r-2j-‘*+, = < (y-‘$ -j$ (7) 

along with the boundary conditions 
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In the above equations, the primes denote partial 
differentiation with respect to r~, Pr is the Prandtl 
number, and the nonsimilarity parameter &x) is 
found to have the expression 

l(x) = 7 (Gr,/4)- liJ. (10) 

Surface injection corresponds to 5 > 0 and surface 
suction to 5 < 0. The dimensionless streamwise com- 
ponent of the mass transfer parameter, U,, is defined 
as 

For downstream vectoring U, > 0 and for upstream 
vectoring U, < 0. The expression for U, in equation 
(11) is x-dependent; however, in the numerical solu- 
tions Cl, is assumed constant. The interpretation of 
this assumption will be discussed later when numerical 
results are presented. 

The physical quantities of interest are the velocity 
and temperature distributions, the heat transfer rate 
at the wall qw = -k(dT/dy),.,, or the local Nusselt 
number Nu, = q,x/[k(T,- r,)], and the wall shear 
stress rw = ~c(CJu/d~~)~, 0. The streamwise velocity com- 
ponent U, the local Nusselt number Nu,~, and the local 
wall shear stress r, can be expressed by 

and 

u = 4(vlx)(G1;/4) “‘J-K v) 

Nu,~ = - (Gr,v/4) ““e’(<, 0) 

(12) 

(13) 

7, = 4(pv/~~)(Gr,~/4)~‘~f”(5,0). (14) 

Horizontal plates 
For this case, I$ = n/2, one introduces the following 

dimensionless variables : 

Y 
5, = t,(.Q, vl = ;(Gr.J5) 

l/5 (15) 

along with the reduced stream function f, (5 ,, q,) and 
the dimensionless temperature function 0, (5,) 4, ) 
defined, respectively, by 

(16) 

The nonsimilar parameter 5, (x) depends only on x. 
When 5, (x) = 0, the boundary layer is similar and 
‘I, becomes a true similarity variable. Substituting 
equations (15) and (16) into equations (2)-(4) with 
4 = x/2, we obtain the following system of equations : 

@‘, E+3f,e; =25, (18) 

with the boundary conditions 

f,(<,,O) = - 2, 

m,a = 1, f;(5,h = 0, o,(r,,c~) = 0. 

(19) 

In the above equations, the primes now stand for 
partial differentiation with respect to q, and the non- 
similarity parameter 5, (x) is found as 

t,(x) = y(Gr,/5)m’ ‘. (20) 

Injection corresponds to 5, > 0 and suction to 5, < 0. 
The dimensionless streamwise component of the mass 
transfer parameter, I/,, is as defined by equation (11). 
The expressions for the streamwise velocity u, the local 
Nusselt number Nu,, and the local wall shear stress 
5, for this case are given by 

and 

u = 5(W(W5) “‘f ‘, (< I 1 rl,) 

Nu, = -(Gr,/5)1’Se’,(5,,0) 

(21) 

(22) 

7w = 5(~v/x2)(Gr.~/5)3’51’;(t:l,0). (23) 

It should be noted that when there is no mass trans- 
fer at the boundary, t(x) = t,(x) = 0 and equations 
(7)-(9) and (17)-( 19) reduce, respectively, to ordinary 
differential equations. If t(x) or 5, (x) is a constant, 
the system of equations (7)-(9) or (17)-( 19) can again 
be reduced to a set of ordinary differential equations. 
By examining equation (10) or (20) one can see that 
for t(x) or 5, (x) constant, v, must be a function of x 
and must vary with x as v, cc x- ‘I4 or as v, cc xm2”. 
Since there are great difficulties in physically main- 
taining such a variable surface mass transfer, the pre- 
sent study is concerned only with constant surface 
mass transfer v, and u,, and thus the case of constant 
t(x) or constant 5, (x) is not considered. 

METHOD OF SOLUTION 

Equations (7)-(9) and (17)-(19) were solved by a 
finite difference method as described by Tien [8]. In 
this method, the partial differential equations are first 
reduced to a system of first-order equations which are 
then expressed in finite difference form and solved, 
along with the boundary conditions, by an iterative 
scheme. The set of coupled partial differential equa- 
tions is first solved for < = 0 (or 5, = 0), which per- 
tains to a similar solution. For r = 0 (or 5, = 0), 
a fourth-order Runge-Kutta integration scheme was 
employed, and the integration was performed from 
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FIG. 1 
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E = (v,z/v)(Gr./4)- VI 

Local wall shear stress results for vertical plates; 
Pr = 0.7. 

q = 0 to q = qz, (or q, = 0 to q, = q,), where qL is 
far enough from the wall to provide a finite approxi- 
mation to q = co. In the present study, I, = IO was 
used in the numerical computations. The integration 
was performed with a step size Aq (or ArI,) of 0.02. 
Care was taken in choosing the proper step size Arl 
(or Aq,) for accurate converged solution and solu- 
tions were also obtained for Aq (or Aq,) of 0.01 and 
0.04 to ensure the accuracy of the solution. With the 
solution for 5 = 0 (or 5, = 0) and 0 6 q < qo. (or 
0 < q, < ~7~) available, the solution then proceeded to 
the next 5 (or 5,) location. The condition for < > 0 
(or r, > 0) corresponds to a normal component of 
injection and that for 5 < 0 (or 5, < 0) corresponds 
to a normal component of suction. This solution pro- 
cedure was repeated for a succession of 5 (or 5,) 
values until converged solutions were obtained for the 
desired range of 5 (or 5,) values. The step size used 
for A< (or A<,) was 0.05. Numerical results were 
obtained for Pr = 0.7 over a range of values of 
the injection/suction parameter 5 (or 5,) and the 
streamwise mass transfer parameter U,. 

RESULTS AND DISCUSSION 

Vertical plates 
Numerical results for the local wall shear stress z,, 

expressed in terms of r,(x2/4~v)(Gr,/4)- 3i4. and the 
local Nusselt number Nu,, expressed in terms of 
Nu,(Gr.J4) - “4. as a function of 5 = (0,x/v) 
x (Gr,/4)- “4, are shown, respectively, in Figs. I and 
2 for values of U, ranging from -0.5 to 0.5, with 
Pr = 0.7. The situation with U, > 0 corresponds 

to downstream vectoring and that with rl; < 0 to 
upstream vectoring. In practical applications, Figs. 
I and 2 can be interpreted in different ways. If it is 
desired to study the effect of the horizontal com- 
ponent of mass transfer, u,, on natural convection, 
we assign the values of u,, Gr.,, and x. In doing so, 
we obtain a fixed value of <. A vertical line drawn 
through this value of 5 that intersects the curves for 
different Uw values represents changing values of 
u, in the U, expression. If it is desired to study the 
effect of the normal component of mass transfer, u,, 
on natural convection, we assign the values of u,, Gr,, 
and .Y. A given value of < now represents a given value 
of ~1, which can be used to fix cl,. Finally, if it is 
desired to study the effect of buoyancy on natural 
convection, we assign the values of u,, v,, and x. In 
doing so, Uw is fixed, and a change in the value of 5 
now represents a change in the value of Gr,. 

It can be seen from Figs. 1 and 2 that for a given 
value of Uw, an increase in 5 in the positive sense 
(injection) results in a decrease in both the wall shear 
stress and the local Nusselt number (i.e. the surface 
heat transfer rate) for all the values of -0.5 
< cl,, < 0.5 that were computed. On the other hand, 
as < is increased in the negative sense (suction), the 
wall shear stress increases when U, < 0, but it 
increases and then decreases when U, 2 0. Thus, for 
U, 3 0 there is a critical value of 5 for suction which 
results in the maximum wall shear stress. Increasing 
the suction beyond this point will result in a decrease 
in the wall shear stress. The heat transfer rate, 
however, increases with.increasing values of 5 < 0 for 
both Uw < 0 and U, 2 0, and continues to increase 

1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
\ \ 

\ 

0.8 

-1.0 -0.5 0 0.5 1.0 

( = (v.z/u)(Gr./l)-‘1’ 

FIG. 2. Local Nusselt number results for vertical plates; 
Pr = 0.7. 
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even when the suction is increased past its critical 
value, beyond which the shear stress starts decreasing 
with [. 

At first glance, there appears to be a contradiction 
in the trends between the local wall shear stress results 
and the local heat transfer results for the situation with 
{ < 0 and CJW 2 0. However, there is no contradiction 
and their behaviors can be explained by examining 
the velocity distributions f’(& q) = (I/~)(ux/v) 

(Gr.A) - ‘I2 shown in Figs. 3-5. It can be seen from 
the figures that the peak of the velocity distribution 
decreases as 5 increases in the negative sense. This 
indicates that the mass transfer normal to the 
wall in suction impedes the buoyancy force parallel to 
the wall. Thus, with increasing r value in the negative 
sense, the effective buoyancy force decreases and this 
results in a critical value of suction that will give rise 
to the maximum wall shear stress. Beyond this critical 
value the wall shear stress decreases, but the heat 
transfer rate increases. This is due to the fact that the 
peak of the velocity distribution and hence the entire 
flow boundary layer (see Fig. 5) shifts toward the wall 
beyond the critical value of suction. This causes a 
decrease in the thermal boundary layer thickness and 
an increase in the temperature gradient at the wall 
(see Fig. 8). Thus, for < < 0 and U, 2 0. even though 
the wall shear stress decreases as 5 becomes more neg- 
ative, the heat transfer rate continues to increase. The 
temperature distributions 0(5, q) = [T(x,y) - T,]/ 
(T,,,- 2”,) for given values of VW and r are shown in 
Figs. 6-8. 

The local wall shear stress and the local Nusselt 
number as a function of U, for a fixed 5 value are 
shown, respectively, in Figs. 9 and 10. It can be seen 

0.5 

0.4 

q 0.3 
7 

F 

& 0.2 
T  
z 

z 
II O.l 

3 

-= 
+-, 0.0 

-0.1 

-0.2 

0 1 2 3 4 5 6 7 

rl = (Y/dW./4)“’ 

FIG. 3. Velocity profiles for vertical plates; Pr = 0.7, 
u, = -0.5. 
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v = (~/4(Gr./4)‘/’ 

FIG. 4. Velocity profiles for vertical plates ; Pr = 0.7, r/, = 0. 

from the figures that for increasing U, in the negative 
sense (increasing upstream vectoring), the local wall 
shear stress increases while the local surface heat 
transfer rate decreases. On the other hand, for increas- 
ing U, in the positive sense (increasing downstream 
vectoring), the local wall shear stress decreases while 
the local surface heat transfer rate increases. 

0.5 ,  ”  ”  I  ”  ”  I  ”  ”  I  “‘. I  ”  ”  I  ”  

u, = 0.5 

0.4 6 
-..-._-._ ,J 
-.-_- 0.6 
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7 - -1.2 
7 
-2 
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i 
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II O.l 

3 

s 
+ 0.0 

-0.1 

-0.2 I... ,....I....,....,... a... 

0 1 2 3 4 5 6 7 

rl = (YIz)(Gr./4)‘/’ 

FIG. 5. Velocity profiles for vertical plates; Pr = 0.7, 
u, = 0.5. 
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1.2 

0.2 

0 1 2 3 4 5 

r) = (y/z)(Gr./4)“’ 

FIG. 6. Temperature profiles for vertical plates; Pr = 0.7, 
r/, = -0.5. 

Horizontal plates 
The local wall shear stress TV, expressed in terms of 

r,(x’/511v)(Gr,/5)-3’5, and the local Nusselt number 
Nu,, expressed in terms of Nu,(Gr,/S) - ‘j5, as a func- 
tion of 5, = (u,x/v)(Gr,/S)- ‘I5 for this case are shown, 
respectively, in Figs. 11 and 12 for values of UW rang- 
ing from -0.5 to 0.5 with Pr = 0.7. For a given value 
of U, < 0, it can be seen from these figures that an 

1.2 

0.2 

0.0 

0 1 2 3 4 5 

9 = (u/z)(Gr./4)“’ 

FIG. 7. Temperature profiles for vertical plates; Pr = 0.7, 
cJw = 0. 

0 1 2 3 4 5 

q = (y/z)(Gr./4)“’ 

FIG, 8. Temperature profiles for vertical plates; Pr = 0.7, 
u, = 0.5. 

increase in [, in the positive sense (injection) results 
in an increase in the local wall shear stress and a 
decrease in the local Nusselt number (i.e. the local 
heat transfer rate at the wall) for all the values of 
U, < 0 that were computed. On the other hand, for 
U, > 0, an increase in 5, in the positive sense gives 
rise to a decrease in both the local wall shear stress 
and the local surface heat transfer rate. Similarly, for a 

1.0 m-.. . . . . . . . . . . . . . . . . . . . . . . . . # .] 

E 
--_--_-._ 0.8 
------ 0.4 

0.9 - ------ 0.0 
--- -0.4 

cr. - -0.8 
7 

0.5 ,.........,........ 

-0.5 -0.3 -0.1 0.1 0.3 0.5 

cr. = (s/uw)/(%+) 

FIG. 9. Local wall shear stress vs U, for vertical plates; 
Pr = 0.7. 
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FIG. IO. Local Nusselt number vs r/, for vertical plates; 
Pr = 0.7. 

given value of U, < 0, an increase in 5, in the negative 
sense (suction) gives rise to an increase in both the 
local wall shear stress and the local surface heat trans- 
fer rate. However, for a given value of UW > 0, an 
increase in 5 in the negative sense results in a decrease 
in the local wall shear stress and an increase in the 
local surface heat transfer rate. In practical appli- 
cations, Figs. I I and I2 can be interpreted in different 

0.8 L.........,.........,.........,........., 

0.2 f.........I.........I.........I.........i 
-1.0 -0.5 0 0.5 1.0 

G = (%zlv)(GrJ5)- w 

FIG. I 1. Local wall shear stress results for horizontal plates ; 
Pr = 0.7. 
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El = (w/Y)(Gr*/S)-“6 

FIG. 12. Local Nusselt number results for horizontal plates; 
Pr = 0.7. 

ways, as was discussed earlier relative to Figs. I and 
2 for the case of vertical plates. 

The behavior of the local wall shear stress and the 
local Nusselt number for horizontal plates with 
U, > 0 can be explained from the velocity dis- 
tributions in a manner similar to that discussed for 
the case of vertical plates. The velocity profiles for 
horizontal plates are similar to those of the vertical 
plates and are not shown to conserve space. It suffices 
to mention that the peak of the velocity distribution 
decreases as r, increases in the negative sense (suc- 
tion). This implies that increasing suction normal to 
the wall decreases the effective buoyancy force and 
hence the wall shear stress when UW > 0. However, 
the surface heat transfer rate increases. This is because 
the peak of the velocity distribution shifts toward the 
wall as 5, becomes more negative and as Uw increases 
from a negative to a positive value, which causes the 
thinning of the thermal boundary layer and an 
increase in the temperature gradient at the wall. On 
the other hand, an increase of <, in the positive sense 
(injection) gives rise to an increase in the peak velocity, 
which shifts away from the wall. Thus, for < > 0 and 
U, 2 0, as 5 increases the local wall shear stress 
decreases, and the local heat transfer rate also 
decreases as a result of the decrease in the wall tem- 
perature gradient. The temperature distributions 
O,(c,,q,) = [T(x,y)-T,]/(T,-T,)forgivenvalues 
of U, and 5, are similar to those of the vertical plates 
and are not shown. 

Figures 13 and I4 illustrate the local wall shear 
stress and the local Nusselt number (i.e. the local 
surface heat transfer rate) as a function of U, for a 
fixed 5 value. As in the case of vertical plates, it is seen 
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t I t . . . . . . . ..-....... .I I 
-0.5 -0.3 -0.1 0.1 0.3 0.5 

VW = (UW/V~)/(V.Z/Y) 

FIG. 13. Local wall shear stress vs U, for horizontal plates; 
Pr = 0.7. 

that for increasing UW in the negative sense (increasing 
upstream vectoring), the local wall shear stress 
increases while the local surface heat transfer rate 
decreases. For increasing Uu,. in the positive sense 
(increasing downstream vectoring), the local wall 
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O.,~ 

0.2 

c ________-__-__-_ 1 
--------_____----________________ 

i _ i _________-.__-.__-.________ 

1 
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o.. / ,,,,,,-.,,,.,,,,,,,, j ~~‘,~ ,,_,,,l,,, 

-0.5 -0.3 -0.1 0.1 0.3 0.5 

FIG. 14. Local Nusselt number vs (/, for horizontal plates; 
Pr = 0.7. 

shear stress decreases while the local surface heat 
transfer rate increases. 

A thorough comparison of the present results can- 
not be made with existing work, because no numerical 
solutions or experimental data for natural convection 
on vertical and horizontal plates with uniform vec- 
tored surface mass transfer are available. The results 
from the present study for the case of vertical plates 
with normal surface mass transfer without the vec- 
toring (i.e. no streamwise component of mass trans- 
fer) compare very well with those of Minkowycz and 
Sparrow [9]. Their solution was obtained using the 
local nonsimilarity method truncated at the second 
level. 

CONCLUSION 

In this paper, natural convection in laminar bound- 
ary layer flows over isothermal vertical and horizontal 
flat plates under uniform vectored surface mass trans- 
fer has been studied analytically. The motivation is to 
determine the effect of buoyancy and mass transfer 
on the flow and heat transfer characteristics of the 
boundary layer by changing the values of D, (the 
normal component of the uniform mass transfer), 
u, (the streamwise component of the uniform mass 
transfer), and Gr, (the local Grashof number). 

For the case of vertical plates. the local wall shear 
stress and the local surface heat transfer rate decrease 
with increasing c in the positive sense (normal injec- 
tion) for given values of u, and Gr,. Increasing 5 in 
the negative sense (normal suction) causes an increase 
in the local surface heat transfer rate. For downstream 
vectoring (U% > 0), the local wall shear stress 
increases as suction increases until a critical value of 
5 is reached. Increasing 5 beyond this critical value 
results in a decreasing local wall shear stress. For 
upstream vectoring (U,, < 0). both the local wall shear 
stress and the local surface heat transfer rate increase 
with increasing 5 in the negative sense. 

For horizontal plates it has been found that the 
local wall shear stress increases and the local wall 
heat transfer rate decreases with increasing r, in 
the positive sense (normal injection) for I/, < 0 
(upstream vectoring). For rl; > 0 (downstream vec- 
toring), increasing r, in the positive sense results in a 
decrease in both the local wall shear stress and the 
local surface heat transfer rate. Increasing 5, in the 
negative sense (normal suction) gives rise to an 
increase in both the local surface heat transfer rate and 
the local wall shear stress for Uw < 0, but a decrease in 
the local wall shear stress and an increase in the local 
surface heat transfer rate for U, > 0. 

For both vertical and horizontal plates, with a given 
value of 5, positive or negative, increasing U, in the 
positive sense (downstream vectoring) results in a 
decrease in the local wall shear stress and an increase 
in the local surface heat transfer rate. On the other 
hand, increasing U, in the negative sense (upstream 
vectoring) results in an increase in the local wall shear 
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stress and a decrease in the local surface heat transfer 

rate. An increase in the buoyancy intensity (i.e. the 

Grashof number Gr,) for given u,. and U, gives rise 

to an increase in the local wall shear stress and the 
local surface heat transfer rate. A decrease in Gr,, for 

given 24, and u,, on the other hand, results in a 

decrease in the two quantities. 
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